28 research outputs found

    MILiMAC:Flexible Catheter With Miniaturized Electromagnets as a Small-Footprint System for Microrobotic Tasks

    Get PDF
    Advancements in medical microrobotics have given rise to an abundance of agents capable of localised interaction with human body in small scales. Nevertheless, clinically-relevant applications of this technology are still limited by the auxiliary infrastructure required for actuation of micro-agents. In this letter, we approach this challenge. Using finite-element analysis, we show that miniaturization of electromagnets can be used to create systems capable of providing magnetic forces adequate for micro-agent steering, while retaining small footprint and power consumption. We use these observations to create MILiMAC (Microrobotic Infrastructure Loaded into Magnetically-Actuated Catheter). MILiMAC is a flexible catheter employing three miniaturized electromagnets to provide localized magnetic actuation at the deeply-seated microsurgery site. We test our approach in a proof-of-concept study deploying MILiMAC inside a test platform to deliver and steer a 600 [\boldsymbol{\mu }m] ferromagnetic microbead. The bead is steered along a set of user-defined trajectories using closed-loop position control. Across all trajectories the best performance metrics are the mean error of 0.41 [mm] and the steady-state error of 0.27 [mm]

    Contactless acoustic micro/nano manipulation:a paradigm for next generation applications in life sciences

    Get PDF
    Acoustic actuation techniques offer a promising tool for contactless manipulation of both synthetic and biological micro/nano agents that encompass different length scales. The traditional usage of sound waves has steadily progressed from mid-air manipulation of salt grains to sophisticated techniques that employ nanoparticle flow in microfluidic networks. State-of-the-art in microfabrication and instrumentation have further expanded the outreach of these actuation techniques to autonomous propulsion of micro-agents. In this review article, we provide a universal perspective of the known acoustic micromanipulation technologies in terms of their applications and governing physics. Hereby, we survey these technologies and classify them with regards to passive and active manipulation of agents. These manipulation methods account for both intelligent devices adept at dexterous non-contact handling of micro-agents, and acoustically induced mechanisms for self-propulsion of micro-robots. Moreover, owing to the clinical compliance of ultrasound, we provide future considerations of acoustic manipulation techniques to be fruitfully employed in biological applications that range from label-free drug testing to minimally invasive clinical interventions

    A Contactless and Biocompatible Approach for 3D Active Microrobotic Targeted Drug Delivery

    Get PDF
    As robotic tools are becoming a fundamental part of present day surgical interventions, microrobotic surgery is steadily approaching clinically-relevant scenarios. In particular, minimally invasive microrobotic targeted drug deliveries are reaching the grasp of the current state-of-the-art technology. However, clinically-relevant issues, such as lack of biocompatibility and dexterity, complicate the clinical application of the results obtained in controlled environments. Consequently, in this work we present a proof-of-concept fully contactless and biocompatible approach for active targeted delivery of a drug-model. In order to achieve full biocompatiblity and contacless actuation, magnetic fields are used for motion control, ultrasound is used for imaging, and induction heating is used for active drug-model release. The presented system is validated in a three-dimensional phantom of human vessels, performing ten trials that mimic targeted drug delivery using a drug-coated microrobot. The system is capable of closed-loop motion control with average velocity and positioning error of 0.3 mm/s and 0.4 mm, respectively. Overall, our findings suggest that the presented approach could augment the current capabilities of microrobotic tools, helping the development of clinically-relevant approaches for active in-vivo targeted drug delivery

    Timing of anterior cruciate ligament reconstruction and its effect on associated chondral damage and meniscal injury: a prospective observational study

    Get PDF
    Background: Following an anterior cruciate ligament (ACL) tear, associated injuries in the knee involving menisci and articular cartilage increase with time. This study was performed to assess the distribution of secondary injuries after an ACL tear with time and identify a suitable timing for the reconstruction surgery. Methods: 74 patients with an ACL tear were divided into three groups based on time since injury- less than six months, six months to one year, and greater than one year. The odds of finding each lesion in every group were calculated and tested for statistical significance. Receiver operating characteristic curves (ROC) were drawn to predict individual lesions with time since injury. The diagnostic performance and statistical significance of these tests were identified. Results: The odds of finding all lesions were greater than one after a year of ACL tear but only chondral damage was statistically significant (p=0.025). Poor diagnostic accuracy was observed for medial meniscal injury even after three years of an ACL tear. Chondral injury showed a good area under the curve (0.817) which predicted chondral damage with a sensitivity of 62% at a cut-off of three years after the ACL injury. Conclusions: After three years of ACL tear, meniscal injuries could not be accurately predicted. However, a significant rise in chondral injuries could be seen and predicted accurately with good sensitivity. There could be a role of MRI or arthroscopy to assess the extent of injury of articular cartilage in patients who do not undergo ACL reconstruction after this time.

    CeFlowBot:A Biomimetic Flow-Driven Microrobot that Navigates under Magneto-Acoustic Fields

    Get PDF
    Aquatic organisms within the Cephalopoda family (e.g., octopuses, squids, cuttlefish) exist that draw the surrounding fluid inside their bodies and expel it in a single jet thrust to swim forward. Like cephalopods, several acoustically powered microsystems share a similar process of fluid expulsion which makes them useful as microfluidic pumps in lab-on-a-chip devices. Herein, an array of acoustically resonant bubbles are employed to mimic this pumping phenomenon inside an untethered microrobot called CeFlowBot. CeFlowBot contains an array of vibrating bubbles that pump fluid through its inner body thereby boosting its propulsion. CeFlowBots are later functionalized with magnetic layers and steered under combined influence of magnetic and acoustic fields. Moreover, acoustic power modulation of CeFlowBots is used to grasp nearby objects and release it in the surrounding workspace. The ability of CeFlowBots to navigate remote environments under magneto-acoustic fields and perform targeted manipulation makes such microrobots useful for clinical applications such as targeted drug delivery. Lastly, an ultrasound imaging system is employed to visualize the motion of CeFlowBots which provides means to deploy such microrobots in hard-to-reach environments inaccessible to optical cameras.</p

    CeFlowBot:A Biomimetic Flow-Driven Microrobot that Navigates under Magneto-Acoustic Fields

    Get PDF
    Aquatic organisms within the Cephalopoda family (e.g., octopuses, squids, cuttlefish) exist that draw the surrounding fluid inside their bodies and expel it in a single jet thrust to swim forward. Like cephalopods, several acoustically powered microsystems share a similar process of fluid expulsion which makes them useful as microfluidic pumps in lab-on-a-chip devices. Herein, an array of acoustically resonant bubbles are employed to mimic this pumping phenomenon inside an untethered microrobot called CeFlowBot. CeFlowBot contains an array of vibrating bubbles that pump fluid through its inner body thereby boosting its propulsion. CeFlowBots are later functionalized with magnetic layers and steered under combined influence of magnetic and acoustic fields. Moreover, acoustic power modulation of CeFlowBots is used to grasp nearby objects and release it in the surrounding workspace. The ability of CeFlowBots to navigate remote environments under magneto-acoustic fields and perform targeted manipulation makes such microrobots useful for clinical applications such as targeted drug delivery. Lastly, an ultrasound imaging system is employed to visualize the motion of CeFlowBots which provides means to deploy such microrobots in hard-to-reach environments inaccessible to optical cameras

    Acoustically-actuated bubble-powered rotational micro-propellers

    Get PDF
    Bubble-powered acoustic microsystems span a plethora of applications that range from lab-on-chip diagnostic platforms to targeted interventions as microrobots. Numerous studies strategize this bubble-powered mechanism to generate autonomous self-propulsion of microrobots in response to high frequency sound waves. Herein, we present two micro-propeller designs which contain an axis-symmetric distribution of entrapped bubbles that vibrate to induce fast rotational motion. Our micro-propellers are synthesized using 3D Direct Laser Writing and chemically-functionalized to selectively trap air bubbles at their micro-cavities which function as propulsion units. These rotational acoustic micro-propellers offer a dual advantage of being used as mobile microfluidic mixers, and as autonomous microrobots for targeted manipulation. With regards to targeted manipulation, we demonstrate magneto-acoustic actuation of our first propeller design that can be steered to a desired location to perform rotational motion. Furthermore, our second propeller design comprises of a helical arrangement of bubble-filled cavities which makes it suitable for spatial micro-mixing. Our acoustic propellers can reach speeds of up to 400 RPM (rotations per minute) without requiring any direct contact with a vibrating substrate in contrast to the state-of-the-art rotary acoustic microsystems

    Residential Demand Side Management model, optimization and future perspective: A review

    Get PDF
    The residential load sector plays a vital role in terms of its impact on overall power balance, stability, and efficient power management. However, the load dynamics of the energy demand of residential users are always nonlinear, uncontrollable, and inelastic concerning power grid regulation and management. The integration of distributed generations (DGs) and advancement of information and communication technology (ICT) even though handles the related issues and challenges up to some extent, till the flexibility, energy management and scheduling with better planning are necessary for the residential sector to achieve better grid stability and efficiency. To address these issues, it is indispensable to analyze the demand-side management (DSM) for the complex residential sector considering various operational constraints, objectives, identifying various factors that affect better planning, scheduling, and management, to project the key features of various approaches and possible future research directions. This review has been done based on the related literature to focus on modeling, optimization methods, major objectives, system operation constraints, dominating factors impacting overall system operation, and possible solutions enhancing residential DSM operation. Gaps in future research and possible prospects have been discussed briefly to give a proper insight into the current implementation of DSM. This extensive review of residential DSM will help all the researchers in this area to innovate better energy management strategies and reduce the effect of system uncertainties, variations, and constraints

    Impact of Segmented Magnetization on the Flagellar Propulsion of Sperm-Templated Microrobots

    Get PDF
    Technical design features for improving the way a passive elastic filament produces propulsive thrust can be understood by analyzing the deformation of sperm‐templated microrobots with segmented magnetization. Magnetic nanoparticles are electrostatically self‐assembled on bovine sperm cells with nonuniform surface charge, producing different categories of sperm‐templated microrobots. Depending on the amount and location of the nanoparticles on each cellular segment, magnetoelastic and viscous forces determine the wave pattern of each category during flagellar motion. Passively propagating waves are induced along the length of these microrobots using external rotating magnetic fields and the resultant wave patterns are measured. The response of the microrobots to the external field reveals distinct flow fields, propulsive thrust, and frequency responses during flagellar propulsion. This work allows predictions for optimizing the design and propulsion of flexible magnetic microrobots with segmented magnetization
    corecore